If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20=56n-12n^2
We move all terms to the left:
-20-(56n-12n^2)=0
We get rid of parentheses
12n^2-56n-20=0
a = 12; b = -56; c = -20;
Δ = b2-4ac
Δ = -562-4·12·(-20)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-64}{2*12}=\frac{-8}{24} =-1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+64}{2*12}=\frac{120}{24} =5 $
| 2(x-$3.50)=$5.80 | | w^2-7w-35=0 | | 9m2+18m+-2=5 | | (2x+125)=(x+163) | | -7x-4=6x-108 | | 2(x-3.50)=5.80 | | 5x^2-3x;x=2 | | 3x-8=-7+2x | | 7r^2+63r=-56 | | 3w+4w-1=12+3/5(w+1) | | 9y-7y-13=10.17 | | (-2p-8)/4=6 | | 4x-16=12-5x | | |3x-4|=20 | | v/4+5=17 | | -11r+11(6r+4)=55+10r | | -6x-2x=40 | | 3(w+2)-7w=34 | | 4(x-5)-5=6x=33 | | n^2=14+5n | | 6(x+1)+5=13-2(1-3x) | | 2(2b-1)=15 | | C(x)=0.85x+8 | | w=3/8=1/4 | | 4t+2+5t-8t=3+6 | | 18x+25=24x+13 | | 60+132d-36=-d+7 | | X=525-(63-5x) | | 4t+2+5t-8t=0 | | (5x+9)=(3x+5) | | 0=-16x^2+36x-20 | | 4x^2-16x^2+16=0 |